Valutazione dell’esposizione ad agenti cancerogeni/mutageni nei laboratori di ricerca: sistema integrato tra checklist, sopralluoghi e uso di algoritmi

Introduzione
Il rischio lavorativo da agenti cancerogeni e/o mutageni, diversamente da quanto previsto per tutti gli altri fattori di rischio, richiede una valutazione dettagliata e continua dell’esposizione. Questa non deve avvenire solo a posteriori, cioè ad attività lavorativa in corso e/o già avviata, ma deve essere eseguita preventivamente, già in fase progettuale nell’attivazione di ogni nuovo processo lavorativo e/o nel caso di modifiche sostanziali di un ciclo preesistente.
L’obiettivo di tale valutazione è quello di conseguire misure di prevenzione e protezione in grado evitare e/o ridurre al livello più basso possibile l’esposizione.
Nel caso dei laboratori di ricerca va considerata la particolarità di tali ambienti lavorativi, caratterizzati dalla presenza di numerosi agenti, utilizzati occasionalmente, in piccole quantità e per breve tempo.
Tutto ciò rende difficile sia l’applicazione dei normali criteri di igiene industriale (es.: misurazioni degli agenti mediante campionamenti ambientali e/o personali), sia i processi di valutazione dell’esposizione. In questi luoghi di lavoro, ai fini della valutazione espositiva, risulta più idoneo l’utilizzo di metodologie teorico-pratiche (algoritmi), che consentono di ottenere in modo semplificato, ma comunque corrispondente ai rischi lavorativi, una puntuale valutazione dell’esposizione.
Nel presente lavoro viene presentata una metodologia valutativa basata su algoritmo che prende in considerazione tutti gli elementi fondamentali che concorrono a determinare il rischio espositivo ad agenti cancerogeni/mutageni. La metodologia sviluppata è in grado di determinare sia il rischio espositivo dovuto ad un singolo agente che l’esposizione a più agenti.

Materiali e metodi
La metodologia valutativa proposta non prevede la valutazione della concentrazione in aria dei vari agenti, questa comunque può essere utilizzata in alcuni casi specifici per valutare la bontà delle misure di prevenzione/protezione attuate.
Il processo valutativo si basa sull’analisi ponderata (scelta pesata) di alcuni parametri ritenuti validi di indicatori dell’esposizione (stato chimico-fisico dell’agente utilizzato, presenza di dispositivi di protezione collettivi, quantità utilizzata, temperatura del processo lavorativo, frequenza di utilizzo, tempo di manipolazione).
L’esposizione potenziale agli agenti cancerogeni/mutageni viene valutata attraverso un apposito algoritmo (tabella 1), che mette in relazione tali parametri.
Ai fattori di rischio selezionati vengono assegnati in modo arbitrario dei valori scalari (tabella 2), proporzionali al grado di pericolosità (VAP - valori arbitrarli di pericolosità). Il prodotto dei vari indicatori (numero adimensionale), quantifica la potenziale esposizione.
Il modello proposto risulta tanto più efficace quanto più i fattori selezionati sono pertinenti alla caratterizzazione del rischio.
Contributi scientifici

Tabella 1 - Algoritmo utilizzato per la valutazione del rischio cancerogeno mutageno

<table>
<thead>
<tr>
<th>Heanc = P x CH x T x Q x M x F</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
</tr>
<tr>
<td>CH</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>Q</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

Tabella 2 - VAP - Valori arbitrari di pericolosità

<table>
<thead>
<tr>
<th>Fattori di rischio</th>
<th>Categorie di rischio</th>
<th>Valori arbitrari di pericolosità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fattore di protezione collettiva</td>
<td>Ciclo chiuso - cappa</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Parzialmente sotto cappa</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Senza cappa</td>
<td>10</td>
</tr>
<tr>
<td>Stato chimico-fisico</td>
<td>Gel, solido compatto</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Liquido non volatile, cristalli</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Gas, vapore, liquido volatile, polvere fine</td>
<td>10</td>
</tr>
<tr>
<td>Temperatura di processo</td>
<td>Ambiente</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>tra 25°C - 60°C</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>> di 60°C</td>
<td>10</td>
</tr>
<tr>
<td>Quantitativi usati</td>
<td>< di 1 g</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1 - 50 g</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>> di 50 g</td>
<td>10</td>
</tr>
<tr>
<td>Frazione giornaliera</td>
<td>minuti / giorno</td>
<td>minuti / 480</td>
</tr>
<tr>
<td>Frequenza di utilizzo</td>
<td>giorni / anno</td>
<td>giorni / 230</td>
</tr>
</tbody>
</table>

Esso integra fattori tipicamente codificabili (tipo di agente, caratteristiche chimico-fisiche, dispositivi di protezione collettivi) con fattori derivabili da specifici rilevamenti in campo (procedure di lavoro, tipologia di esposizione, tempo e frequenza di manipolazione, quantitativi utilizzati), verificabili sia mediante l’analisi di apposite checklist (tabella 3) compile dagli utilizzatori, sia da appositi sopralluoghi periodici/saltuari.

Criteri di categorizzazione del rischio espositivo da agenti cancerogeni mutageni

L’applicazione dell’algoritmo per ogni agente cancerogeno utilizzato porta alla definizione del rispettivo indice di rischio.

Il processo valutativo si propone di discriminare le diverse attività e classificare i lavoratori in lavoratori potenzialmente esposti e lavoratori esposti, secondo quanto riportato in tabella 4.
Tabella 3 - Checklist per il censimento delle informazioni inerenti le attività lavorative con agenti cancerogeni/mutageni

<table>
<thead>
<tr>
<th>Unità operativa</th>
<th>Responsabile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominativi dei lavoratori addetti alla manipolazione di agenti cancerogeni/mutageni:</td>
<td></td>
</tr>
<tr>
<td>Dipendenti:</td>
<td>Ospiti:</td>
</tr>
<tr>
<td>Luogo e modalità di stoccaggio degli agenti cancerogeni/mutageni:</td>
<td></td>
</tr>
<tr>
<td>Luogo di utilizzo:</td>
<td></td>
</tr>
<tr>
<td>Motivi per cui si utilizza l’agente cancerogeno: descrizione delle attività lavorative</td>
<td></td>
</tr>
<tr>
<td>Risultati dell’indagine circa la possibilità di sostituire l’agente cancerogeno/mutageno:</td>
<td></td>
</tr>
<tr>
<td>Forma chimico-fisica (gas, vapore, liquido, solido cristallino, polvere fine)</td>
<td></td>
</tr>
<tr>
<td>Quantitativi utilizzati per singola manipolazione (μg, mg, g, μl, ml, ecc.)</td>
<td></td>
</tr>
<tr>
<td>Possibilità di ridurre i quantitativi utilizzati</td>
<td>SI</td>
</tr>
<tr>
<td>Frequenza delle manipolazioni (giornaliera, settimanale, mensile ecc.)</td>
<td></td>
</tr>
<tr>
<td>Durata del ciclo lavorativo (minuti, ore, ecc.)</td>
<td></td>
</tr>
<tr>
<td>Uso di dispositivi di protezione collettivi conformi</td>
<td>SI</td>
</tr>
<tr>
<td>Possibilità di ciclo chiuso</td>
<td>SI</td>
</tr>
<tr>
<td>Specificare se esistono fasi lavorative che non possono essere eseguite sotto cappa (es. pesata, travasi, ecc.)</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 4 - Categorizzazione del rischio cancerogeno/mutageno

<table>
<thead>
<tr>
<th>Valutazione dell’esposizione ad agenti cancerogeni mutageni:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradualità della potenziale esposizione (valore limite)</td>
</tr>
<tr>
<td>Lavoratore potenzialmente esposto: il valore dell’esposizione risulta superiore a quello della popolazione generale solo per eventi imprevedibili e non sistematici.</td>
</tr>
<tr>
<td>Lavoratore esposto: il valore dell’esposizione risulta sistematicamente superiore a quello della popolazione generale</td>
</tr>
</tbody>
</table>

La categorizzazione del rischio di cui sopra è stata stabilita impostando nell’algoritmo le condizioni riportate nella tabella 5.

La risoluzione dell’algoritmo con i VAP della tabella 5 porta il valore di Hcanc a 6,25 ossia al valore da noi imposto come valore limite.

Criteri di categorizzazione e valutazione del rischio indotto dall’esposizione a più agenti cancerogeni/mutageni

Nei laboratori di ricerca esiste inoltre la possibilità che un lavoratore possa risultare esposto, sia pur a livello potenziale, a più agenti cancerogeni/mutageni. Per una corretta valutazione è necessario tenere in debita considerazione tale problema.

La valutazione del rischio da esposizione a miscele è possibile quando sono disponibili informazioni sufficienti sugli effetti delle specifiche miscele di inquinanti di interesse.

Come noto, i dati disponibili sui rischi tossicologici si riferiscono, tranne poche eccezioni (IPA, PCB), a singoli agenti. Da quanto esposto risulta evidente che è estremamente difficile conoscere l’effetto nocivo dovuto all’interazione tra più agenti.

La valutazione del rischio associabile all’esposizione a miscele può essere affrontata in vario modo: in relazione alla modalità di esposizione (inhalatoria, per ingestione, cutanea, ecc.), agli agenti utilizzati, al loro meccanismo di azione e alla loro biodisponibilità.
Contributi scientifici

Tabella 5 - Valori arbitrari di pericolosità assegnati per la definizione del valore limite

<table>
<thead>
<tr>
<th>Parametri selezionati</th>
<th>Categorie</th>
<th>VAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>uso di cappa chimica conforme</td>
<td>SI</td>
<td>2</td>
</tr>
<tr>
<td>fattore chimico fisico</td>
<td>gas, vapore, liquido volatile, polvere fine</td>
<td>10</td>
</tr>
<tr>
<td>temperatura di processo</td>
<td>25°C</td>
<td>2</td>
</tr>
<tr>
<td>quantitativi usati</td>
<td>1-50g o 1-50ml</td>
<td>5</td>
</tr>
<tr>
<td>frequenza di utilizzo</td>
<td>50 giorni anno</td>
<td>0,25*</td>
</tr>
<tr>
<td>fattore di manipolazione</td>
<td>60 minuti al giorno</td>
<td>0,125*</td>
</tr>
</tbody>
</table>

* La combinazione del fattore frequenza per il fattore tempo giornaliero di esposizione, così come definito comporta una potenziale esposizione a tali agenti per un tempo pari a 15 minuti giornalieri

In letteratura esistono diverse metodologia per valutare gli effetti indotti da esposizioni multiple (additività di risposta, additività di dose, ecc.). Per quanto concerne il rischio cancerogeno da esposizioni multiple, le procedure correnti fanno riferimento alla somma dei rischi stimati per ciascun componente.

Sulla base di quanto sopra riportato abbiamo realizzato un modello valutativo del rischio da esposizione multipla basato sull’ipotesi che il rischio complessivo possa derivare dalla somma dei rischi dei singoli agenti.

Il procedimento valutativo proposto è di tipo catetlativo e si basa sull’ipotesi dell’additività degli effetti, cioè come se tutti gli agenti venissero utilizzati contemporaneamente (cosa che si verifica difficilmente), e se i loro effetti si concentrasse su un singolo ipotetico organo bersaglio.

In pratica per tale valutazione si calcola in primis per ogni agente cancerogeno/mutageno il rispettivo indice di rischio (Hcanc); si sommano i valori di Hcanc relativi ai singoli agenti e si otteiene il valore di rischio totale (Htot). In pratica abbiamo che:

\[
H_{\text{tot}} = H_{\text{canc1}} + H_{\text{canc2}} + H_{\text{canc3}} + H_{\text{canc..n}}
\]

Il valore di rischio totale (Htot) così ottenuto viene confrontato con il valore limite da noi imposto per un singolo agente, secondo lo schema riportato nella tabella 6.

Discussion e conclusione

La valutazione del rischio espositivo ad agenti cancerogeni/mutageni negli ambienti di ricerca è sicuramente un esercizio complesso che richiede il concorso di professionalità diverse. Il metodo elaborato consente di effettuare in modo semplificato, ma corrispondente alla realtà, una valutazione del rischio cancerogeno/mutageno, riferibile a ciascun lavoratore, anche in caso di utilizzo di più agenti. Tale metodologia valutativa è

Tabella 6 - Classificazione del rischio da esposizione multipla

<table>
<thead>
<tr>
<th>Valutazione dell’esposizione multipla ad agenti cancerogeni/mutageni</th>
<th>Htot ≤ di 6,25</th>
<th>Htot ≥ di 6,25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavoratore potenzialmente esposto: il valore dell’esposizione risulta superiore a quello della popolazione generale (solo per eventi imprevedibili e non sistematici)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavoratore esposto: il valore dell’esposizione risulta sistematicamente superiore a quello della popolazione generale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

308
di rapida attuazione, di facile applicazione e presenta un costo relativamente basso.

L'algoritmo da noi presentato integra fattori tipicamente codificabili (stato chimico fisico, presenza di sistemi di protezione) con fattori derivabili da appropriati rilevamenti in campo (procedura di lavoro, quantità utilizzate, temperature di processo, durata e frequenza della manipolazione), verificati mediante checklist e/o appositi sopralluoghi. Mediane la sua applicazione è possibile effettuare una valutazione e una classificazione del rischio anche in fase progettuale dell'attività lavorativa.

La metodologia usata permette inoltre di discriminare le lavorazioni che necessitano di misure di tutela urgenti o di un supplemento di indagini (monitoraggio ambientale e/o personale), dalle lavorazioni che possono essere rivisitate su tempi medio lunghi.

Come si vede, l'algoritmo in oggetto non tiene conto dei limiti di esposizione (TLV), ciò ovviamente è voluto in quanto per gli agenti cancerogeni non è possibile stabilire una soglia di esposizione sicura anche se bassa. Il monitoraggio ambientale viene però previsto ogni qual volta sia ritenuto necessario. La metodologia usata tiene conto delle difficoltà di identificare livelli espositivi sicuri, prendendo in considerazione tutti quei fattori che concorrono a determinare l'esposizione.

L'uso dei dispositivi di protezione individuale e la formazione/informazione non sono stati considerati come indicatori ai fini della valutazione del rischio in quanto premesse fondamentali che non devono entrare nella valutazione se non come vincoli imprescindibili legati all'espletamento delle attività.

Bibliografia

